Interpreting Data Using Statistical Models with Python Free Download
4 Likes Comment

Interpreting Data Using Statistical Models with Python 1

Interpreting Data Using Statistical Models with Python   Free Tutorial Download

Data science and data modeling are fast emerging as crucial capabilities that every enterprise and every technologist must possess these days. Increasingly, different organizations are using the same models and modeling tools, so what differs is how those models are applied to the data. Today, more than ever, it is really important that you know your data well.

In this course, Interpreting Data using Statistical Models with Python you will gain the ability to go one step beyond visualizations and basic descriptive statistics, by harnessing the power of inferential statistics.

First, you will learn how hypothesis testing, which is the foundation of inferential statistics, helps posit and test assumptions about data. Next, you will discover how the classic t-test can be used in a variety of common scenarios around estimating means. You will also learn about related tests such as the Z-test, Pearson’s Chi-squared test, Levene’s test and Welch’s t-test for dealing with populations that have unequal variances.

Finally, you will round out your knowledge by using ANOVA, a powerful statistical technique used to measure statistical properties across different categories of data. When you’re finished with this course, you will have the skills and knowledge to use powerful techniques from hypothesis testing, including t-tests, ANOVA and regression tests in order to measure the strength of statistical relationships within your data.


Download  Interpreting Data Using Statistical Models with Python  Free

Go to Download Tutorials Page

Password :

You might like

About the Author: minhtri

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.