Advertisements   
   

Machine Learning for BI, PART 3: Regression & Forecasting

Advertisements   
   

Requirements

  • This is a beginner-friendly course (no prior knowledge or math/stats background required)
  • We’ll use Microsoft Excel (Office 365) for some course demos, but participation is optional
  • This is PART 3 of our Machine Learning for BI series (we recommend taking Parts 1 & 2 first)

Description

This course is PART 3 of a 4-PART SERIES designed to help you build a strong, foundational understanding of Machine Learning:

  • PART 1: QA & Data Profiling
  • PART 2: Classification
  • PART 3: Regression & Forecasting
  • PART 4: Unsupervised Learning (Coming Soon!)

This course makes data science approachable to everyday people, and is designed to demystify powerful Machine Learning tools & techniques without trying to teach you a coding language at the same time.

Advertisements   
   

Instead, we’ll use familiar, user-friendly tools like Microsoft Excel to break down complex topics and help you understand exactly HOW and WHY machine learning works before you dive into programming languages like Python or R. Unlike most Data Science and Machine Learning courses, you won’t write a SINGLE LINE of code.

COURSE OUTLINE:

In this Part 3 course, we’ll start by introducing core building blocks like linear relationships and least squared error, then show you how these concepts can be applied to univariate, multivariate, and non-linear regression models.

From there we’ll review common diagnostic metrics like R-squaredmean errorF-significance, and P-Values, along with important concepts like homoscedasticity and multicollinearity.

Last but not least we’ll dive into time-series forecasting, and explore powerful techniques for identifying seasonality, predicting nonlinear trends, and measuring the impact of key business decisions using intervention analysis:

  • Section 1: Intro to Regression
    • Supervised Learning landscape
    • Regression vs. Classification
    • Feature engineering
    • Overfitting & Underfitting
    • Prediction vs. Root-Cause Analysis
  • Section 2: Regression Modeling 101
    • Linear Relationships
    • Least Squared Error (SSE)
    • Univariate Regression
    • Multivariate Regression
    • Nonlinear Transformation
  • Section 3: Model Diagnostics
    • R-Squared
    • Mean Error Metrics (MSE, MAE, MAPE)
    • Null Hypothesis
    • F-Significance
    • T-Values & P-Values
    • Homoskedasticity
    • Multicollinearity
  • Section 4: Time-Series Forecasting
    • Seasonality
    • Auto Correlation Function (ACF)
    • Linear Trending
    • Non-Linear Models (Gompertz)
    • Intervention Analysis

Throughout the course we’ll introduce hands-on case studies to solidify key concepts and tie them back to real world scenarios. You’ll see how regression analysis can be used to estimate property prices, forecast seasonal trends, predict sales for a new product launch, and even measure the business impact of a new website design.

If you’re ready to build the foundation for a successful career in Data Science, this is the course for you!

__________

Join today and get immediate, lifetime access to the following:

  • High-quality, on-demand video
  • Machine Learning: Regression & Forecasting ebook
  • Downloadable Excel project file
  • Expert Q&A forum
  • 30-day money-back guarantee

Happy learning!

-Josh M. (Lead Machine Learning Instructor, Maven Analytics)

__________

Looking for our full business intelligence stack? Search for Maven Analytics to browse our full course library, including Excel, Power BI, MySQL, and Tableau courses!

See why our courses are among the TOP-RATED on Udemy:

“Some of the BEST courses I’ve ever taken. I’ve studied several programming languages, Excel, VBA and web dev, and Maven is among the very best I’ve seen!” Russ C.

“This is my fourth course from Maven Analytics and my fourth 5-star review, so I’m running out of things to say. I wish Maven was in my life earlier!” Tatsiana M.

“Maven Analytics should become the new standard for all courses taught on Udemy!” Jonah M.

Who this course is for:

  • Anyone looking to learn the basics of machine learning through real-world demos and intuitive, crystal clear explanations
  • Data Analysts or BI experts looking to transition into data science or build a fundamental understanding of machine learning
  • R or Python users seeking a deeper understanding of the models and algorithms behind their code
  • Excel users who want to learn powerful tools for forecasting & predictive analytics

What you’ll learn

  • Build foundational machine learning & data science skills, without writing complex code
  • Use intuitive, user-friendly tools like Microsoft Excel to introduce & demystify machine learning tools & techniques
  • Predict numerical outcomes using regression modeling and time-series forecasting techniques
  • Calculate diagnostic metrics like R-Squared, Mean Error, F-Significance and P-Values to diagnose model quality
  • Explore unique, hands-on case studies to see how regression analysis can be applied to real-world business intelligence use cases

 

Machine Learning for BI, PART 3: Regression & Forecasting, Free Tutorials Download

Download Machine Learning for BI, PART 3: Regression & Forecasting Free Links

Password : freetutsdownload.net

Author: Ho Quang Dai

I am Ho Quang Dai, from Vietnam – A country that loves peace. I share completely free courses from major academic websites around the world. Hope to bring free knowledge to everyone who can’t afford to buy


Related Courses

Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments

Report Link Die

Please provide the most detailed information, we will re-upload as soon as possible